
ATTEMPT – Parameter-Efficient Multi-task Tuning via
Attentional Mixtures of Soft Prompts: A Replication Study
Róbert Belanec12, Simon Ostermann3, Ivan Srba1 and Mária Bieliková1

1 Kempelen Institute of Intelligent Technologies, Bratislava, Slovakia
2 Faculty of Information Technology, Brno University of Technology, Brno, Czechia

3 German Research Institute for Artificial Intelligence (DFKI),
Saarland Informatics Campus, Germany

{robert.belanec, ivan.srba, maria.bielikova}@kinit.sk
simon.ostermann@dfki.de

Abstract

Generative language models gained an increase in popularity shortly after the introduction of the001
transformer architecture (Vaswani et al., 2017), which resulted in a fast increase in the number of002
model parameters. Currently, large language models contain billions of trainable parameters, which003
makes them power and cost inefficient. Large language models also require significant amounts004
of training data, which especially benefits well-resourced languages. To address these problems,005
parameter-efficient fine-tuning methods have emerged. Parameter-efficient fine-tuning methods006
aim to fine-tune generally pre-trained language models while training only a fraction of parameters.007
In the scientific and academic community, authors often compare with the current state-of-the-art.008
However, for the results to be relevant and trustworthy, both of the works (state-of-the-art and009
compared) must be reproducible. In our work, we present the methodology and the results of our010
replication study of a parameter-efficient fine-tuning method introduced in the paper ATTEMPT:011
Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts. To replicate012
the results provided by the authors, we have conducted a series of experiments and we show that013
better-performing source prompts may contribute more to the overall results. We also point out a014
stability issue and provide examples of results that have a better score but are harder to replicate015
due to the randomness factors. Finally, we compare our results to the results provided by the016
authors and derive a conclusion based on a discussion.017

1 Introduction018

In recent years, generative language models have experienced a steady increase in popularity. After the019
introduction of the transformer architecture (Vaswani et al., 2017) for natural language processing, there020
has been a fast increase in the number of model parameters. The first widely-used transformer models021
contained millions of trainable parameters (e.g. BERT-Large having 340 million parameters (Devlin et al.,022
2019) and GPT having 117 million parameters (Radford et al., 2018)). Recent architectures contain023
billions of trainable parameters (e.g. GPT-2 having 1.5 billion parameters (Radford et al., 2019) and024
GPT-3 having 175 billion parameters (Brown et al., 2020)). With the rising trend of increasing the number025
of parameters to achieve better results, models often require a vast amount of computational resources026
for training. Besides their parameter hunger, large language models also require significant amounts of027
training data, which especially benefits well-resourced languages. The newest language models often028
perform sub-par for low-resourced languages, decreasing the exhibited trust in such models. Significant029
trust decrease is also caused by the loss of interpretability that correlates with the size of the newest030
language models.031

Consequently, there is a strong motivation in the natural language processing research community032
to decrease the number of trained parameters and the need for large amounts of training data, while033
maintaining the results on downstream tasks. To address these problems, parameter-efficient and data-034
efficient fine-tuning methods have emerged. Parameter-efficient fine-tuning methods aim to fine-tune035
generally pre-trained language models while training only a fraction of the model parameters. Data-efficient036
finetuning methods aim to leverage the power of large pre-trained models and try to adapt them to specific037
tasks or domains with only minimal amounts of training data. Many state-of-the-art parameter-efficient038
models have been shown also to require less training data, which is why both problems can often be039
alleviated with a single method (Yu et al., 2022; Gu et al., 2022).040

In the scientific and academic community, authors often compare with the current state-of-the-art.041
However, for the results to be relevant and trustworthy, both of the works (state-of-the-art and compared)042

1



must be reproducible. This means, that by following the authors’ publication, we should be able to derive043
the same results as provided by the authors. In our work, we present the methodology and the results044
of our replication study of a parameter-efficient fine-tuning method presented in the paper ATTEMPT:045
Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts (Asai et al., 2022).046

2 Related Work047

Language models. Recently, generative language models have experienced a breakthrough that started048
by introducing the transformer architecture (Vaswani et al., 2017), which was preceded by the introduction049
of novel methods in machine learning translation like Sequence to Sequence models and attention (Sutskever050
et al., 2014; Bahdanau et al., 2014). For natural language generation, the GPT (Radford et al., 2018)051
model was introduced. Shortly after, BERT (Kenton and Toutanova, 2019) architecture was introduced,052
replacing the bi-directional LSTM (Peters et al., 2018) with a bidirectional transformer architecture053
pre-trained to de-mask masked parts of a text sequence.054

Recently, with the introduction of large language models (Radford et al., 2018, 2019; Touvron et al.,055
2023a,b; Jiang et al., 2023), the number of model parameters has risen from millions of trainable parameters056
to billions. These models require large amounts of computational resources and large amounts of data to057
train.058

Large language models have also been trained to solve multiple natural language processing tasks. For059
example, authors of the T5 model (Raffel et al., 2020) pre-trained their model on a set of a multi-task060
mixture of unsupervised and supervised tasks. The T5 model is designed to solve text-to-text denoising061
problems by training on text-to-text format datasets with span corruption. Building upon T5 versatility,062
its improved version Flan-T5 (Chung et al., 2022) was introduced shortly after. Nevertheless, fine-tuning063
large language models (e.g. to perform in a multi-task setting) is also a parameter-heavy task, therefore,064
new methods of training have been introduced.065

Parameter-efficient fine-tuning. The core idea of parameter-efficient fine-tuning is to train a neural066
network model while backpropagating only over a small fraction of parameters. One of the first works067
towards more efficient fine-tuning of the language models was a work introducing sequential adapters068
(Houlsby et al., 2019), which are small trainable feedforward neural network modules, that are inserted069
into transformer architecture layers, while keeping the rest of the model frozen. Adapters and their070
variations (Pfeiffer et al., 2021; He et al., 2022; Chronopoulou et al., 2023) are still heavily used since they071
provide flexibility for multi-task problems (e.g. by training multiple adapters for each task separately and072
swapping between them on demand).073

Some parameter-efficient fine-tuning methods focus on the reparameterization of the original weights074
by introducing a smaller matrix that is then transformed into a bigger matrix that represents the δW075
that will be added to the base model weights. For example, the Intrinsic SAID (Aghajanyan et al., 2020)076
method uses a Fastfood transform to transform from the low-rank decomposing, but it is not that effective077
due to the high memory complexity of the Fastfood transform (Le et al., 2013). Building on top of the078
Intrinsic SAID method LoRA (Hu et al., 2021) introduced two separate matrices that form the resulting079
δW matrix. After the introduction of LoRA, other methods based on LoRA appeared. For example,080
QLoRA (Dettmers et al., 2023) uses quantization of model parameters to 4-bit NormalFloat and uses a081
paged optimizer to deal with the memory spikes.082

Another parameter-efficient fine-tuning method that adds modules to the base models is prompt-tuning083
(Lester et al., 2021). Prompt-tuning trains embeddings (in a separate embedding module) that are084
prepended to the input embeddings before inserting them into the base model. Prompt tuning requires085
only less than 0.01% of the original parameters to train the model to a specific task. In parallel with086
prompt-tuning, prefix-tuning (Li and Liang, 2021) was developed. Instead of prepending a single matrix087
of weights to the first layer, in prefix-tuning, a matrix is prepended to each separate layer of a transformer088
architecture. Therefore, it requires around 1% of the original parameters, still a relatively small number.089
These methods can be classified as soft prompt fine-tuning methods (Liu et al., 2023; Vu et al., 2022; Asai090
et al., 2022; Hambardzumyan et al., 2021; Wang et al., 2023), as they are fine-tuning parameter-efficient091
soft prompts (i.e., which are not made by humans, when compared to hard prompts). These methods092
provide more significant parameter reduction than some methods incorporating adapters but also sacrifice093
a portion of the model input context.094

Some recent works also focus on transferring soft prompt information like SPoT (Vu et al., 2022) and095
ATTEMPT (Asai et al., 2022). The SPoT method investigates the transferability of soft prompts on 160096
task combinations. ATTEMPT focuses on fine-tuning the model using prompt tuning on multiple tasks.097

2



LM transformerInput embeddingsTrained embeddings

Prompt encoder
(embedding layer) LM word embedding

Input tokensAll tokens (indices)

Figure 1: Diagram representing training process of the prompt tuning method. The blue color represents
components with frozen parameters and the red color represents components with trainable parameters.
The yellow color represents components without any weights (i.e. model inputs and outputs or utility
functions).

After training the source soft prompts for each source task, ATTEMPT then trains a target soft prompt098
to solve the target tasks using a trainable attention layer to incorporate the source prompts accordingly.099
This method comes from the idea that learning to solve different tasks may contribute to solving other100
tasks. ATTEMPT is still very parameter-efficient as it trains only 0.4% of the original model parameters.101

3 Replicated Methods102

We have divided the ATTEMTP parameter-efficient fine-tuning method replication into two main parts:103
1) the prompt tuning (Lester et al., 2021) replication, which we will use to train the source soft prompts104
and target soft prompts for prompt transfer, and 2) the ATTEMPT method replication. ATTEMPT is105
built on top of the prompt tuning and heavily relates to it. At the time of execution of this replication106
study, the prompt tuning parameter-efficient fine-tuning method is implemented in the publicly available107
parameter-efficient fine-tuning module (Mangrulkar et al., 2022). Regardless, we have decided to replicate108
the prompt tuning method, since we can build on it when implementing ATTEMPT. In this chapter, we109
will further describe both replicated methods.110

3.1 Parameter-Efficient Prompt Tuning111

The first parameter-efficient fine-tuning we will describe is prompt tuning (Lester et al., 2021). Prompt112
tuning is a parameter-efficient fine-tuning method that prepends a trainable embedding (prompt embedding)113
to the input embeddings to be forwarded as input to the base model. When training, the prompt embedding114
guides the language model to produce better results. Prompt tuning can therefore be seen as automatic115
prompt generation (which is also similar to adversarial reprogramming that can be seen in computer116
vision tasks (Elsayed et al., 2019)). This automatically trained prompt embedding is called a soft prompt.117

Soft prompts are often compared with hard prompts. Hard prompts are prompts, that are made118
by a human (prompt engineer) to improve the results of already trained language models without any119
weight updates. This comparison of soft prompts and hard prompts can sometimes mislead the reader120
as it suggests that soft prompts are interpretable and readable in human language. Interpretation of a121
soft prompt in human language is not straight forward as the prompt embedding is trained separately.122
Therefore it has its own set of tokens (indices of the embedding) which is not a subset of the base model123
tokens and, therefore cannot be detokenized to the base model’s vocabulary.124

In a text-to-text approach using T5 (Raffel et al., 2020) as a base model we can interpret the language125
model as a conditional probability Prθ(Y |X) where Y is a sequence of tokens conditioned by a sequence126
of input tokens X parametrized by models weights θ. Prompting is a method that incorporates creating a127
hard prompt P which is a set of tokens prepended to input tokens [P ;X]. Prompt tuning builds upon this128
idea and introduces parametrization of P with its weights θP . The conditional probability of generating129
Y is now Prθ;θP (Y |[P ;X]). T5 embeds the set of input tokens into a matrix Xe ∈ Rn×e where n is the130
length of the input token sequence e is the dimension of T5 embeddings. Prompt tuning represents soft131
prompts as a matrix of parameters P ∈ Rp×e where p is the length of the soft prompt.132

To gain a better overview of the prompt tuning parameter-efficient fine-tuning method, we provide a133
method diagram that can be seen in Figure 1. After the training, soft prompts include information about134

3



the tasks that they were trained on. This can also mean that combining multiple soft prompts benefits in135
solving multi-task problems. The ATTEMPT method further builds upon this idea.136

3.2 ATTEMPT – Attentional Mixtures of Soft Prompts137

The ATTEMPT method takes advantage of the prompt tuning and builds on top of the method by138
introducing an attention module to create a mixture of pre-trained soft prompts based on how much139
they contribute to the result. The main hypothesis of the ATTEMPT method is when transferring the140
information from one soft prompt trained on a specific task, it can also contribute to solving other tasks,141
which is parallel to the language model transfer learning (e.g. model trained to summarize texts in the142
English language has already learned to understand the English language grammar and therefore can be143
trained easily to solve other English language tasks).144

ATTEMPT can be trained in multiple ways – in a single-task setting (training each dataset separately)145
and in multi-task training on multiple concatenated datasets with an option to share the attention module146
across multiple tasks. In both of these settings, ATTEMPT trains a set of target prompts for each147
task (i.e. in a single task setting and a multi-task setting without a shared attention module the number148
of target prompts is 1) and uses a set of soft prompts to calculate the addition to the target prompt.149
We will further describe each of these training settings in the following paragraphs. The overview of the150
ATTEMPT method can be seen in Figure 2.151

Single-task training setting. To train ATTEMPT in a single-task setting, we first need a set of152
pre-trained soft prompts (that authors call source prompts) and choose a soft prompt to initialize the153
target prompt (the target prompt can be also initialized with random weights, but authors used one of154
the pre-trained source prompts to initialize the target prompt). The target prompt is trained similarly to155
the prompt-tuning prompt (a matrix of parameters that is prepended to the matrix of input embeddings).156
What ATTEMPT does on top of that is to add a weighted sum of source prompts to the target prompt to157
produce an instance prompt. The weighted sum is calculated using attention scores from the attention158
module.159

Multi-task training setting. To train ATTEMPT in a multi-task setting, we can train the target160
prompt similarly to the single-task setting, but concatenate multiple datasets into a single training dataset.161
We can then train the target prompt on a single train set and evaluate it on multiple evaluation sets162
separately. Multi-task ATTEMPT can be also trained with a shared attention module for multiple tasks.163
This means that for each dataset, we have a separate target prompt identified by a task ID. We then164
assign a task ID to each dataset before training. During training, we then retrieve the right target prompt165
based on the task ID of the input data. The process of retrieving the right target prompt is depicted in166
Figure 3. After we retrieved the right prompts for every input in the batch, we can continue with the167
instance prompt calculation as mentioned in the single-task training setting. This will increase the overall168
trained parameters, but the usage of only a single shared attention module for multiple target prompts169
compensates for the increase.170

Attention module. The role of the attention module is to determine a score for the contribution of171
each source prompt based on the model input X, source prompts P , and the target prompts Ptarget.172
Since X ∈ Rn×e and Pj ∈ Rp×e have different sequence lengths, the attention module first does max173

pooling over the model input and source prompts to get X̂ ∈ Re and P̂j ∈ Re. After the max pooling of174

a sub-network G projects the input X̂ into the space of source prompts. The sub-network G consists of175
one downsampling fully connected input layer Hdown = WT

down(X̂) and one upsampling fully connected176
layer with a SiLU (Elfwing et al., 2018) non-linear activation function Hup = WT

up(SiLU(Hdown)). As an177
output layer, there is a layer norm layer Hout = LayerNorm(Hup) after the upsampling layer. Finally, the178

attention module computes the attention score aj by multiplying the P̂j and Hout and applies a softmax179
over the scores as follows.180

ATTEMPT also scales the attention scores with temperature T (Radford et al., 2021) to avoid making181
the attention over-confident. To calculate an instance prompt ATTEMPT adds a weighted sum to the182
target prompt as follows:183

Pinstance = Ptarget +

t+1∑
j=1

ajPj (1)184

4



LM transformer

Input embeddingsTarget prompt

Prompt encoder
(embedding layer) LM word embedding

Input tokensAll tokens (indices)

Attention module

MNLI

SQuAD

XY

...

Trained embeddings

Attention scores

Weighted average

Prompt tuning

Instance prompt

.

+

Figure 2: Diagram representing training process of the ATTEMPT method. The blue color represents
components with frozen parameters and the red color represents components with trainable parameters.
The yellow color represents components without any weights (i.e. model inputs and outputs or utility
functions). The dot sign operation represents prepending the instance prompt to the input embeddings.
The plus sign operation represents the addition of weighted average interpolation and target prompt from
eq. 1.

ATTEMPT (multi)

MNLI dataset

QQP dataset

XY dataset

...

task_id = 0

task_id = 1

task_id = n

If task_id == 1 Target prompt 1

if task_id == 2 Target prompt 2

if task_id == n Target prompt n

...

Figure 3: Diagram representing the process of target prompt selection when using shared attention across
multiple target prompts. The red color represents components with trainable parameters and the yellow
color represents components without any weights (i.e. model inputs and outputs or utility functions). The
purple color is to represent added information to datasets.

5



Input embeddings Max pooling Linear (upsample)

Linear (downsample)

SiLU

Layer norm

Trained soft prompts

Target prompt

Max pooling BMM

Softmax

Attention scores
(ratios)

Attention subnetwork

Figure 4: Diagram representing the architecture of attention module. The blue color represents components
with frozen parameters and the red color represents components with trainable parameters.

Where Ptarget represents the task-specific part and the weighted sum represents a composition from185
different tasks that differs from different instances of the same task. As shown from eq. 1, the selection of186
1 + at+1 weights for the target task enables the ATTEMPT to use the knowledge from the target prompt187
when the knowledge from soft prompts is insufficient. These are some of the theoretical details from the188
ATTEMPT article, that we have built upon in the implementation phase of our replication study.189

4 Implementation190

Implementing the replicated method is an important part of our replication study. We implement the191
prompt tuning parameter-efficient fine-tuning method as well as the ATTEMPT parameter-efficient192
fine-tuning method. We use Python with deep learning modules (i.e. PyTorch, Transformers). All of our193
source code can be found in our GitHub repository1. Required Python packages are in the requirements.txt194
file. The original ATTEMPT implementation can be found in the authors’ repository2.195

The run.py script creates a PeftTraning object that contains all the information about a single196
training run and handles the data pre-processing and training in the run method. During the dataset197
pre-processing, each dataset has a specified preprocessor function (in tasks/tasks.py file) to transform198
data into text-to-text setting and a formater function to put the transformed data into seq-2-seq format.199
The ATTEMPT authors use the preprocessing available in the T5 implementation, but instead of using200
words for classification (i.e. entailment, neutral, contradiction), the authors used numbers for classification201
(i.e. 0, 1, 2). We suspect that this change may result in pre-trained T5 model sub-optimal performance3.202
However, to achieve similar results as ATTEMPT, we used the same preprocessing as the authors did.203
The datasets are then split into training, validation, and test sets. Large datasets (over 10k samples) have204
a validation set split into 1000 validation samples and the rest for the test set; the small datasets (less or205
equal to 10k samples) have a validation set split into two halves, which are validation and test sets. We206
have used seed 42 to match the authors’ seed for the dataset shuffle.207

The PeftTraning also creates a PeftConfig and initializes a pre-trained version of the T5 model (Raffel208
et al., 2020). The PeftConfig is then inserted into the get_peft_model method, which creates and initializes209
the PeftModel based on the config. The config contains the information about the type of task (in our210
case seq-2-seq language model) and the type of parameter-efficient fine-tuning method (in our case prompt211
tuning or ATTEMPT). We also implement save_pretrained, from_pretrained, forward and generate212
methods. Since we have decided to implement prompt tuning from scratch, we built a parameter-efficient213

1https://github.com/DisAI-Replication-Challenge/ATTEMPT
2https://github.com/AkariAsai/ATTEMPT
3We have also approached the authors to discuss this (and other) possible issues, but unfortunately, we did not receive an

answer at the time of writing this report.

6

https://github.com/DisAI-Replication-Challenge/ATTEMPT
https://github.com/AkariAsai/ATTEMPT


fine-tuning framework called CPEFT for Custom PEFT, which is a custom remake of Huggingface214
parameter-efficient fine-tuning module (Mangrulkar et al., 2022) that we took inspiration from.215

4.1 Prompt Tuning Implementation216

Prompt tuning introduces a new variable to set the length of the prompt to be prepended to the input217
and a new variable to set the initialization of the prompt. The prompt can be initialized with random218
numbers, with random embeddings from the model vocabulary, and with single or multiple pre-trained219
prompt embeddings. During initialization, the prompt encoder Pytorch module is created and appended220
to the base model. The prompt encoder for the seq-2-seq language model is initialized with double the221
size of the prompt since the seq-2-seq architecture consists of two separate networks. This is the behavior222
presented in the Huggingface parameter-efficient fine-tuning module (Mangrulkar et al., 2022), but it does223
not match the implementation from the original prompt tuning paper (Lester et al., 2021). We have224
decided to use the Huggingface parameter-efficient fine-tuning behavior and just halve the size of the225
prompt encoder embeddings in configurations.226

During the forward or generate of the model the method get_prompt is called. This method calls the227
forward function of the prompt encoder which returns the whole embedding matrix of the prompt encoder.228
This matrix is returned for each data in the batch and prepended to the input embeddings. After that,229
the result is inserted into the forward function of the base model. This implementation does not require to230
override of the original backward method or backpropagation calculation. During the saving and loading231
of pre-trained PeftModel, only the prompt encoder embeddings are saved, and loaded.232

We train the source soft prompts individually for the SQuAD (Rajpurkar et al., 2016), SST-2 (Socher233
et al., 2013), QQP, QNLI (Wang et al., 2018), MNLI (Williams et al., 2018), and ReCoRD (Zhang et al.,234
2018) datasets. The training is set for 5 epochs and a single run with evaluation after each epoch. Weight235
decay for the AdamW optimizer is set to 1× 10−5 with a linear scheduler with 500 warmup steps and a236
learning rate of 3× 10−1. The size of all soft prompts is 100. We use a maximum target length of 128 and237
a maximum input length of 512 for SQuAD and 256 for others.238

4.2 ATTEMPT Implementation239

The ATTEMPT method implementation includes an initialization of the prompt encoder with single or240
multiple pre-trained prompt embeddings, based on whether to train ATTEMPT in a single-task setting241
or multi-task setting. When initializing the ATTEMPT method, the prompt encoder and the attention242
module are created. The attention module consists of the sub-network module and the process of creating243
attention scores similar to the diagram in figure 4. The instance prompt is then created in the forward244
method of the PeftModel module.245

The only difference in multi-task ATTEMPT is in the prompt encoder initialization and prompt246
fetching. While the single-task prompt embedding was just a single embedding, in the multi-task setting247
there is a ModuleList of embeddings for each task. Each embedding is then chosen based on the task248
IDs of the data. Similar to the prompt tuning, the instance prompt is then forwarded to the base model.249
During saving and loading of the model together with the prompt encoder embeddings also the attention250
module is saved and loaded.251

We train ATTEMPT on 8 datasets from the GLUE (Wang et al., 2018) benchmark and 5 datasets252
from the SuperGLUE (Wang et al., 2019) benchmark. We train datasets over 10k samples for 10 epochs253
and the rest of the datasets for 20 epochs. We conduct 3 runs for each training configuration, initialize the254
target prompt embeddings with source prompts trained on the MNLI dataset, and use all of our trained255
soft prompts as source prompts. Weight decay for the AdamW optimizer is set to 1× 10−2 with a linear256
scheduler with 500 warmup steps and a learning rate of 3× 10−1. The size of all soft prompts is 100. We257
use a maximum target length of 128 and a maximum input length of 348 for MultiRC and 256 for others.258
Another different setting from prompt tuning is that we pad the input to the maximum length of the T5259
input token sequence.260

The same settings are used in multi-task training except that we are using shared attention in every261
case. We are also not using a different learning rate for the attention sub-network and we are not using262
pre-trained weights for attention sub-network initialization.263

7



dataset SQuAD SST-2 QNLI MNLI QQP ReCoRD avg.

Authors’ soft prompts 31.7 63.7 92 62.9 92.3 82.9 70.9
Our soft prompts 68.8 95.4 95.5 84.6 94.2 82.1 86.8

Table 1: Evaluation of soft prompts provided by authors and our trained soft prompts. We have used
accuracy for all of the datasets.

GLUE SuperGLUE

dataset MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA avg. Multi BoolQ WiC WSC CB avg.

ATTEMPT single 84.3 90.3 93 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
ATTEMPT multi 83.7 90.1 93.2 94.3 90.8 87.3 82.7 64.3 85.8 74.4 78.5 66.5 69.2 82.1 74.1

Authors’ soft prompts single 72.61.7 90.30 92.40.3 92.90.2 900.5 84.52.3 63.11.1 76.35.9 82.81.5 4841.5 70.27.3 606.6 64.74.4 67.99.4 62.213.8

Our soft prompts single 83.80.2 90.30 92.70.3 89.41.3 900.4 86.42 74.80.7 72.82.3 850.9 710.9 75.10.5 57.87.7 661.1 77.42.1 69.52.5

Authors’ soft prompts multi 62.17 87.70.8 90.40.3 91.11.5 89.61.5 72.11 474.2 69.40.2 76.22.1 71.70.9 68.96.2 59.64.1 347.7 65.519.7 59.97.7

Our soft prompts multi 83.50.2 900 92.40.2 90.30.9 90.10.3 81.71.2 73.62.2 69.50 83.90.6 68.20.6 750.7 51.36.4 56.49.1 84.55.5 67.14.5

Table 2: Test results of our ATTEMPT implementation compared to the results provided by authors. The
results are calculated as a mean across 3 runs. We have used Pearson Correlation for STS-B, F1 macro
for MultiRC (Multi), and accuracy for other datasets. The first two rows represent results provided by
the authors in the ATTEMPT paper.

5 Experiments and Results264

Since our replication study focuses mainly on replicating ATTEMPT results, we did not replicate the265
results provided by the prompt tuning authors; we only compared our results to source prompts provided266
by the ATTEMPT authors4. All of our experiment results and saved weights were documented in267
Weights & Biases projects, which are available online5. We are executing the experiments individually per268
configuration on a single Nvidia A10, A40, or A100. There is also a config file available for each of the set269
of experiments, we have created config files for prompt tuning, ATTEMPT single with authors’ source270
prompts, ATTEMPT single with our source prompts, ATTEMPT multi with authors’ source prompts,271
ATTEMPT multi with our source prompts. The ATTEMPT experiments set is multiplied by the number272
of dataset sets used.273

5.1 Prompt Tuning274

Better source prompt performance. Based on the results of source prompt training in Table 1,275
we can say that our source prompts are on average performing better than source prompts provided by276
authors. These results were not expected, as we followed the authors’ hyperparameter settings and only277
trained the source prompts for 5 epochs. Since we trained the source prompts only for 1 run, we cannot278
determine stability across multiple runs.279

The difference from the authors’ results may be caused by the source prompt initialization from T5280
vocabulary, which tends to increase instability as reported by ATTEMPT authors Asai et al. (2022).281
There may be also other randomness factors that we did not take into account, which may have caused the282
results to differ. Authors are also using their custom implementation of prompt which includes adapting283
and changing the original T5 code from the transformers library which may behave differently from our284
adapted CPEFT solution.285

5.2 ATTEMPT286

Better-performing source prompts over multi-task training. The results from ATTEMPT287
experiments in Table 2 show that the single-task method with our trained source soft prompt almost288
matched the authors’ multi-task ATTEMPT results in average GLUE datasets score. This leads us to289
conclude that better-performing source prompts benefit the ATTEMPT performance. However, multi-task290
training splits the number of trained parameters over all trained tasks, which makes it more efficient291
compared to single-task training and more suitable for multi-task problems. Another observation is that292
with the increase of source prompts performance, the overall ATTEMPT performance also increases. This293
can mean that if the target prompt reaches a point in training in which it outperforms the source prompt294
attention interpolation the source prompts may start to hold back the target prompt. We can also see295
that better-performing source prompts tend to increase the stability of multi-task training.296

4https://homes.cs.washington.edu/~akari/models/attempt/source_prompts.zip
5https://github.com/DisAI-Replication-Challenge/ATTEMPT#experiment-results

8

https://homes.cs.washington.edu/~akari/models/attempt/source_prompts.zip
https://github.com/DisAI-Replication-Challenge/ATTEMPT#experiment-results


GLUE SuperGLUE

dataset MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA avg. Multi BoolQ WiC WSC CB avg.

ATTEMPT single 84.3 90.3 93 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
ATTEMPT multi 83.7 90.1 93.2 94.3 90.8 87.3 82.7 64.3 85.8 74.4 78.5 66.5 69.2 82.1 74.1

Authors’ soft prompts single 75.4 93.9 94.6 95.5 88.9 86.3 75.3 77.2 85.9 68.6 77.3 67.4 59.6 78.6 70.3
Our soft prompts single 84.6 94.3 95.4 93.4 89.5 87.2 81.9 75.6 87.7 74.2 76.8 65.8 67.3 82.1 73.2
Authors’ soft prompts multi 75.3 93.8 93.5 95.4 88.9 80.9 60.1 68.7 82.1 68.9 75 60.2 59.6 78.6 68.5
Our soft prompts multi 84.8 94.2 92.5 87.1 88.6 78.9 77.5 68.7 84 69.4 76 64.3 63.5 85.7 71.8

Table 3: Cherry picked results of our ATTEMPT implementation - best validation results over all runs.
We have used Pearson Correlation for STS-B, F1 macro for MultiRC (Multi), and accuracy for other
datasets. The first two rows represent results provided by the authors in the ATTEMPT paper.

Stability problems across multiple runs. We have noticed training instability across multiple runs297
of ATTEMPT, especially in smaller-size datasets (less than 10k samples). The instability may be caused298
by the random weight initialization and since we did not use the seed for the weight (only for dataset299
shuffle) of the attention module, randomness factors may be another reason why our results differ from300
the authors’ results. Since the ATTEMPT authors did not provide any information about stability, we301
have chosen to select also the best validation results across all of the runs to see how the results shift.302
These results can be seen in Table 3 and are called cherry-picked results. We can see that cherry-picked303
results can increase the overall GLUE and SuperGLUE score of our ATTEMPT implementation, but304
these results do not say anything about the true ATTEMPT performance.305

The need for pre-trained attention of multi-task ATTEMPT. We were not able to match306
the results of multi-task ATTEMPT, but we suspect that one of the reasons why our implementation307
underperformed the authors’ multi-task ATTEMPT implementation is the lack of pre-training of the308
attention module. We were not able to retrieve more information about the pre-training of the attention309
module from the ATTEMPT paper, therefore we have decided to not pre-train the attention module. We310
also did not set a separate learning rate for the attention module sub-network, which may be another311
cause of why we ended up with different results.312

Overall ATTEMPT Results. Our experiments with single-task ATTEMPT achieved a better average313
GLUE benchmark score than the results reported in the ATTEMPT paper by ATTEMPT authors and314
almost matched the SuperGLUE benchmark scores. The multi-task ATTEMPT experiments did not315
achieve better results on both benchmarks and our multi-task ATTEMPT results are lower than the316
single-task ATTEMPT results. We suspect that the requirement of the attention module pre-training may317
be crucial for yielding better results for the multi-task training, since it may be harder for the attention318
module to adapt for multiple tasks from scratch. Another reason for not achieving the exact results as319
provided by the ATTEMPT authors may be the randomness factors. Our prompt initialization, data320
splits, and even the training environment (i.e. GPU, Python modules versions) were not necessarily the321
same, which may have caused differences in training.322

6 Conclusion323

In our replication study, we have successfully replicated the parameter-efficient fine-tuning method324
presented in the paper ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures of325
Soft Prompts (Asai et al., 2022). Based on the results from conducted experiments, we have identified that326
better-performing source prompts in single-task ATTEMPT training achieve on average better results327
even when compared to multi-task training. We also discuss the stability problems that we have faced328
during ATTEMPT training and the possible need for pre-training of the attention module for multi-task329
ATTEMPT training.330

Furthermore, we would like to conduct extended experiments with ATTEMPT and investigate how331
dataset size and number of trained source prompts affect the performance of ATTEMPT. At the same time,332
we would like to investigate the transferability of source prompts trained on tasks in multiple languages333
for multi-lingual tasks. Lastly, we would like to look at the architecture of ATTEMPT and its attention334
module to investigate, whether there are other ways how to look at attentional task transferability, like335
replacing the max pooling with another transformation that retains more information.336

9



Acknowledgment337

This research was partially supported by DisAI, a project funded by Horizon Europe under GA No.101079164.338
Computational resources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry339
of Education, Youth and Sports of the Czech Republic.340

References341

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. 2020. Intrinsic dimensionality explains the342
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255.343

Akari Asai, Mohammadreza Salehi, Matthew Peters, and Hannaneh Hajishirzi. 2022. ATTEMPT:344
Parameter-efficient multi-task tuning via attentional mixtures of soft prompts. In Proceedings of the345
2022 Conference on Empirical Methods in Natural Language Processing, pages 6655–6672, Abu Dhabi,346
United Arab Emirates. Association for Computational Linguistics.347

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly348
learning to align and translate. arXiv preprint arXiv:1409.0473.349

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind350
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot351
learners. Advances in neural information processing systems, 33:1877–1901.352

Alexandra Chronopoulou, Matthew Peters, Alexander Fraser, and Jesse Dodge. 2023. AdapterSoup:353
Weight averaging to improve generalization of pretrained language models. In Findings of the Association354
for Computational Linguistics: EACL 2023, pages 2054–2063, Dubrovnik, Croatia. Association for355
Computational Linguistics.356

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi357
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language358
models. arXiv preprint arXiv:2210.11416.359

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Qlora: Efficient finetuning360
of quantized llms. arXiv preprint arXiv:2305.14314.361

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of362
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference363
of the North American Chapter of the Association for Computational Linguistics: Human Language364
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association365
for Computational Linguistics.366

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-weighted linear units for neural network367
function approximation in reinforcement learning. Neural networks, 107:3–11.368

Gamaleldin F. Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. 2019. Adversarial reprogramming of369
neural networks. In International Conference on Learning Representations.370

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 2022. PPT: Pre-trained prompt tuning for few-shot371
learning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics372
(Volume 1: Long Papers), pages 8410–8423, Dublin, Ireland. Association for Computational Linguistics.373

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. 2021. WARP: Word-level Adversarial374
ReProgramming. In Proceedings of the 59th Annual Meeting of the Association for Computational375
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:376
Long Papers), pages 4921–4933, Online. Association for Computational Linguistics.377

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. 2022. Towards378
a unified view of parameter-efficient transfer learning. In International Conference on Learning379
Representations.380

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea381
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp. In382
International Conference on Machine Learning, pages 2790–2799. PMLR.383

10

https://doi.org/10.3030/101079164
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Syx_Ss05tm
https://openreview.net/forum?id=Syx_Ss05tm
https://openreview.net/forum?id=Syx_Ss05tm
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok


Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,384
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint385
arXiv:2106.09685.386

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego387
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral388
7b. arXiv preprint arXiv:2310.06825.389

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-training of deep390
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1, page 2.391

Quoc Le, Tamás Sarlós, and Alexander Smola. 2013. Fastfood-computing hilbert space expansions in392
loglinear time. In International Conference on Machine Learning, pages 244–252. PMLR.393

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt394
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Process-395
ing, pages 3045–3059, Online and Punta Cana, Dominican Republic. Association for Computational396
Linguistics.397

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.398
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the399
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages400
4582–4597, Online. Association for Computational Linguistics.401

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt402
understands, too. AI Open.403

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin404
Bossan. 2022. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/405
huggingface/peft.406

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke407
Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference408
of the North American Chapter of the Association for Computational Linguistics: Human Language409
Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for410
Computational Linguistics.411

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. 2021. Adapter-412
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Conference of413
the European Chapter of the Association for Computational Linguistics: Main Volume, pages 487–503,414
Online. Association for Computational Linguistics.415

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish416
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models417
from natural language supervision. In International conference on machine learning, pages 8748–8763.418
PMLR.419

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language420
understanding by generative pre-training. OpenAI.421

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language422
models are unsupervised multitask learners. OpenAI blog, 1(8):9.423

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,424
Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text425
transformer. The Journal of Machine Learning Research, 21(1):5485–5551.426

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions427
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods428
in Natural Language Processing, pages 2383–2392, Austin, Texas. Association for Computational429
Linguistics.430

11

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264


Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and431
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank.432
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages433
1631–1642.434

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks.435
Advances in neural information processing systems, 27.436

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,437
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023a. Llama: Open and efficient438
foundation language models. arXiv preprint arXiv:2302.13971.439

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay440
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023b. Llama 2: Open foundation441
and fine-tuned chat models. arXiv preprint arXiv:2307.09288.442

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz443
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing444
systems, 30.445

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, and Daniel Cer. 2022. SPoT: Better frozen model446
adaptation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the Association447
for Computational Linguistics (Volume 1: Long Papers), pages 5039–5059, Dublin, Ireland. Association448
for Computational Linguistics.449

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer450
Levy, and Samuel Bowman. 2019. Superglue: A stickier benchmark for general-purpose language451
understanding systems. Advances in neural information processing systems, 32.452

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:453
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of454
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages455
353–355, Brussels, Belgium. Association for Computational Linguistics.456

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. 2023. Multitask457
prompt tuning enables parameter-efficient transfer learning. arXiv preprint arXiv:2303.02861.458

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for459
sentence understanding through inference. In Proceedings of the 2018 Conference of the North American460
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1461
(Long Papers), pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.462

Ping Yu, Wei Wang, Chunyuan Li, Ruiyi Zhang, Zhanpeng Jin, and Changyou Chen. 2022. Stt: Soft463
template tuning for few-shot adaptation. In 2022 IEEE International Conference on Data Mining464
Workshops (ICDMW), pages 941–946. IEEE.465

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme. 2018.466
Record: Bridging the gap between human and machine commonsense reading comprehension. arXiv467
preprint arXiv:1810.12885.468

12

https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

	Introduction
	Related Work
	Replicated Methods
	Parameter-Efficient Prompt Tuning
	ATTEMPT – Attentional Mixtures of Soft Prompts

	Implementation 
	Prompt Tuning Implementation
	ATTEMPT Implementation

	Experiments and Results
	Prompt Tuning
	ATTEMPT

	Conclusion

